Numerical Analysis of Bicycle Helmet Impacts using Biomechanical Metrics

D. Sepulveda-Lopez¹, J. Antona-Makoshi², M. Rodríguez-Millan³

david.sepulveda@mail.polimi.it1; ajacobo@jari.or.jp2; mrmillan@ing.uc3m.es3

¹ MSc. at Politecnico di Milano, Italy; Department of Mechanical Engineering at University Carlos III of Madrid, Spain. ² Japan Automobile Research institute, Japan.

³ Department of Mechanical Engineering at University Carlos III of Madrid, Spain.

1) ABSTRACT

This study evaluates various safety aspects of standardized impacts that cyclist may suffer while wearing a bicycle helmet, by combining a partially validated finite element model of the cranio-cervical region and a newly developed commercial bicycle helmet model.

2) OBJECTIVES OF RESEARCH

The objective of the research is to develop a Numerical Impact Model of bicycle helmets including a partially validated human FEA head in LS-DYNA to analyze the following parameters:

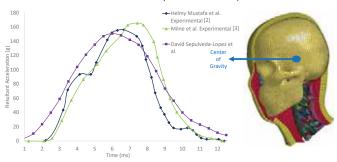
Biomechanical Metrics

- o Peak Linear Acceleration (PLA)
- o Gadd Severity Index (GSI)
- o Head Injury Criterion (HIC15) 3 Ms Criterion (A3MS)
- 5 Ms Criterion (A5MS)
- Skull Fracture Probability

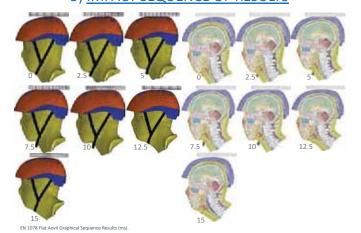
FEA Analyses on the head-helmet Biomechanical system

- o Energy absorbed by the helmet
- o Importance of the EPS Foam density
- o Curves to assess the probability of injury based on impact speed

3) FEA DEVELOPMENT

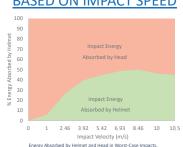

All the elements involved in an experimental impact are included in the simulation; the mesh includes the padding, chin strap, rear strap, shell, and EPS foam of the bicycle helmet, which is based on a helmet available

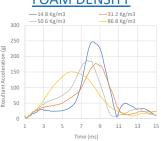
Partially validated finite element model of the cranio-cervical region [1] developed the Japan Automobile Research Institute which includes brain, skull, skin, grey matter, brainstem...


Hexahedral and quadrilateral elements in the Helmet Mesh for convergence purposes.

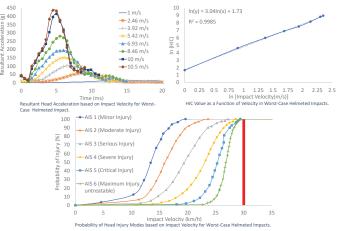
4) VALIDATION OF FEM MODEL

The results of this research and previous experimental studies was validated comparing the resultant acceleration of the Center of Gravity of the head with experimental studies:


5) IMPACT SEQUENCE OF RESULTS


6) RESULTS OF BIOMECHANICAL **METRICS (EN 1078 STANDARD)**

	FLAT ANVIL	CURBSTONE ANVIL
Peak Linear Acceleration (PLA)	75 % Concussion	50 % Concussion
Gadd Severity Index (GSI)	Serious Internal Head Injuries	NO Serious Internal Head Injuries
Head Injury Criterion (HIC15)	100 % Minor Injury 88 % Moderate Injury 49 % Serious Injury 15 % Severe Injury 2 % Critical Injury 0 % Maximum Injury	20 % Minor Injury 7 % Moderate Injury 3 % Serious Injury 0 % Severe Injury 0 % Critical Injury 0 % Maximum Injury
3 Ms Criterion (A3MS)	Does NOT Meet Requirements	Meets Requirements
5 Ms Criterion (A5MS)	Meets Requirements	Meets Requirements
Skull Fracture Probability	14.04 %	0.13 %


7) ENERGY ABSORBED **BASED ON IMPACT SPEED**

8) INFLUENCE OF EPS **FOAM DENSITY**

PROBABILITY OF INJURY BASED ON IMPACT SPEED

10) CONCLUSIONS

- o Under European standard impact conditions (EN 1078) cyclists can suffer head injuries
- o Under EN 1078 impact conditions the helmet can absorb 40 to 50 % of the total impact energy at speeds above 4 m/s
- o A larger EPS foam density achieves a more distributed impact, with a lower HIC value and a lower maximum acceleration
- Minor injuries may occur at impact velocities of 10 km/h, serious injuries at 15 km/h, and severe injuries at 20 km/h. Fatal Injuries will very likely occur at impact speeds of 30 km/h and higher

[1] J. Antona-Makoshi, Thesis for The Degree of Doctor of Philosophy in Machine
[2] H. Mustafs, T. Y. Pang, T. Perret-Elena and A. Subic, "Finite element bloyde
and Vehicle Systems: "Traumatic Brain Injuries: Animal Experiments and Numerical
himmer models development" Elevier, no. 20, pp. 91-97, 2015.
Simulations to Support the Development of a Brain Injury Toleron's, Gothenburg,
[3] G. Mifne, C. Deck, N. Bourdet, R. Carresa, O. Minne, A. Gallegob and R.
Sweden: Vehicle Safety Division, Department of Applied Mechanics, CHALMERS
UNIVESTICT CETE/MOLOCOX, 2015.
UNIVESTICT CETE/MOLOCOX, 2015.

AKNOWLEDGEMENTS

The authors acknowledge the Ministry of Economy and Competitiveness of Spain and FEDER program under the Project DPI2017-88166-R for the financial support of the work; and Marcos Rodriguez-Millán thanks the Spanish Ministry of Education, Culture and Sports for the professor's mobility program José Castillejo's 2018 grant (CASSI)/00292)